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Measurement of the velocity of a Dirac particle 

P C W Davies 
Department of Theoretical Physics, The University, Newcastle upon Tyne NE1 7RU, UK 

Received 11 November 1985 

Abstract. Using a model quantum clock, I show how the velocity of a relativistic particle 
can be measured. The results are used to analyse the long-standing problem of the velocity 
of a Dirac particle. 

1. Background 

The problem of the velocity of a Dirac particle has a long history (see, for example, 
Dirac 1947). It is usually discussed in connection with the so-called ‘zitterbewegung’ 
phenomenon. Interest in the subject arises because of the existence of an explicit 
velocity operator in Dirac theory, which commutes with both the position and momen- 
tum operators. The eigenvalues of the velocity operator in a particular direction are 
*1 (we use units h = c = 1). It would therefore appear that Dirac particles, even with 
a non-zero rest mass, move only with the speed of light. This situation does not arise 
for non-Dirac particles, for which the ve!ocity can take continuous values in the range 

Dirac (1947) explained this curious result as follows. Measurement of velocity 
requires the accurate measurement of position of the particle at subsequent times. The 
first position measurement will produce a sharply peaked wavepacket and introduce 
a large uncertainty in momentum. Hence the particle will almost certainly be found 
subsequently with a very large momentum and a velocity close to the speed of light. 

Dirac’s argument has been criticised by Loba (1956) and Aharonov and Bohm 
(1957), who investigated the behaviour of Dirac wavepackets and concluded that there 
was no difference in the behaviour of highly localised Dirac and non-Dirac particles. 
Thus the novel features of Dirac particles with regard to velocity are not made explicit 
in the measurement strategy suggested by Dirac. 

Aharonov and Bohm (1957), in assessing this negative evidence for the peculiar 
nature of the velocity of Dirac particles, pointed out that a more promising approach 
might be to investigate the measurement of velocity for a particle with well defined 
momentum, rather than position (as they had considered). In that case one might be 
able to exhibit a situation in which the expectation value of momentum was arbitrarily 
small but the velocity was that of light. One could then envisage a beam of massive 
particles moving at the speed of light exerting negligible pressure! But the authors 
went on to counter that a momentum eigenstate would correspond to an infinitely 
extended plane wave for which the concept of two position measurements is mean- 
ingless. 
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However, in this objection they are wrong, as has been shown by Peres (1980). If 
one merely requires the time interval taken by a particle to travel between two fixed 
points, and not the actual moment of passage, there is no need to localise the particle 
at all. 

Following Peres, I here construct a model quantum clock that only runs when a 
particle is passing between two points a fixed distance apart. By reading the clock at 
t = +CO the duration of passage T, and hence the particle’s velocity U = L/ T, is measured. 
This system can then be used to investigate the velocity of particles in momentum 
eigenstates, and to compare the results for Dirac, Klein-Gordon and Schrodinger 
particles. 

The Dirac equation for a particle of rest mass mO may be written 

(i  a/dt  + i a  * V - pmo)+  = 0 

where 

O a  
a=(a 0) p’(0’ 

a,, ay, a, are Pauli spin matrices and I 

- I  O) 

is a unit 2 x 2  matrix. In this form a can be 
interpreted as a velocity operator; for example 

dz ld t  = az. 

2. The model clock 

Any measurement of the particle’s velocity will require coupling between the particle 
and the clock. This will result in a disturbance to both the particle’s motion and the 
normal running of the clock. To reduce this disturbance we shall consider the case of 
a weakly coupled (non-relativistic) quantum clock. The velocity of the particle will 
be measured by preparing the clock in a particular initial stationary state and then 
performing a subsequent observation at late times to ascertain the clock’s final stationary 
state. 

Suppose the running clock has the Hamiltonian H,+ H ’ ,  where H ’  represents the 
driving mechanism that advances the clock through a succession of distinguishable 
states, and H ,  represents the remaining part of the clock’s Hamiltonian. The clock’s 
wavefunction can be considered to factor into the form 9+, where II, depends only 
on the degree of freedom represented by the clock’s ‘ticking’ motion. 

I shall suppose that the clock has n distinct states; n thus determines the resolution 
of the clock. Following Salecker and Wigner (1958), the clock’s wavefunction is chosen 
to be 

m=O 

where +, are stationary states: 

HI+,,, = (2mn/n~)+, .  (4) 
It is easily verified that the successive states x(O), x ( T ) ,  x(27), . . . are mutually 
orthogonal. The evolution operator advances the clock through these successive 
states at times 0, 7, 27,. . . . Thus, for example, 

e-iH’rX(0) = ~ ( 7 ) .  ( 5 )  
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The total Hamiltonian operator for the closed system (Dirac particle + clock) is 

H = -ia V + pmo+ H,+ P ( z ) H ’  ( 6 )  
where P( z )  = 1 if 0 < z < L and 0 otherwise, and z is the position of the particle. Thus 
the clock mechanism is switched on by the arrival of the particle at z = 0 and switched 
off again when it passes z = L. The duration of its passage from 0 to Lis then determined 
by reading how many divisions of T the clock has passed through at late times. 

3. Measuring the velocity 

Attention will be restricted to motion in the z direction only. Writing d ( t ,  z )  for the 
particle wavefunction, we obtain 

H ( d X )  = i alat(4x). (7 )  
Suppose now that the clock, rather than being in the state (3), is instead in one of 

the energy eigenstates: $ = 4,. Then using (4) and separating the variables in (7) 
yields an energy eigenvalue equation for 4: 

(-ia - V + p m o + 2 . r r m P ( z ) / n ~ ) d  = Ed.  (8) 
This is the equation for a Dirac particle moving in the square potential V = Vo = 2.rrm/ n~ 
for 0 < z < L, V = 0 elsewhere. 

To solve (8) we match together solutions 

z < o  

(ignoring an overall normalisation constant), where 
k = ( E 2  - mi)’ / ’  

q = [ ( E - V o ) 2 - m ~ ] 1 ’ 2  

z > L  (9) 

with E > 0, k > 0. Continuity at z = 0 and z = L gives four equations for the four 
coefficients A, B, C, D. After some work one finds 

D = I DI eis (12) 
where 

(13) 
sin( q - k ) L +  (1 - p ) 2  sin( q + k ) L  

(1 + p )  COs(q - k ) L +  (1 - p)’ cOs(q + k ) L  
e =tan-‘ 
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and 

k E - V o + m ,  ’=,( E + m o  )’ 
Thus 8 is the phase shift suffered by the right-moving wave eikr due to the interaction 
with the clock. If this interaction is small, we may neglect backscattering, so A L- 0 ,  
\Dl = 1 and use the approximations 

q = ( E 2  - mi)’”[ 1 - EV,/( E’ - m i ) ]  = k - ( E  V,/ k )  (15) 

(16) 

This enables us to neglecfthe terms ( 1  - /3)2 in ( 1 3 )  because they are at least quadratic 
in the small quantity V , / k  Then 

(17)  

(18) 

Now a classical relativistic particle with energy E and momentum p has velocity 

p = 1 + ( m ,  V,/  k 2 ) .  

8 =tan-’ tan[( q - k )  L ]  = ( q  - k )  L 

- E V, L/  k = - V,L( E / p )  

where p = k is the particle’s momentum. 

U = p /  E. We therefore write ( 1 8 )  as 

8 = -2.rrmLl nrv. (19)  

The space-dependent part of the total wavefunction when the clock is in the 
eigenstate (CI, is therefore approximately 

Z < O  

The superposition of eigenstates which puts the clock in the state x( t )  (see (3) )  is 
then 

and 

where we have chosen x ( 0 )  as the initial state of the clock. 
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Inspection of (21)  shows from ( 5 )  that the phase factor in the last exponent of (23) 
corresponds exactly to the effect of acting on ~ ( 0 )  with the evolution operator 
exp(-iH’T) where T =  L / v ,  i.e. the classical time of flight between the fixed points. 
In other words, the final reading on the clock yields the value L / v  to a resolution T. 

We assumed in ( 1 5 )  and (16 )  that IV,/<< p 2 / ( E + m , )  which in turn requires T>> 

2 7 r / [ p 2 / (  E + m a ) ]  = 1/E for a relativistic particle. This is the expected limitation due 
to the Heisenberg uncertainty principle, and it imposes an uncertainty on v of about 

AV = v 2 /  L( p 2 /  E )  = I /  LE. (24 )  

I now consider the case of a relativistic particle obeying the Klein-Gordon equation. 
The effect of the clock is again represented by a static potential V,. Thus the particle’s 
equation of motion is 

[ ( E  - v,)’ + V’ - m i ]  4 = 0. (25)  
An identical argument to the foregoing establishes that Vo= 27rm/n7, in the interval 
0 < x < L. Choosing incoming waves of the form q5 = eikz, and matching q5 and dq5/dz 
at z = 0 and z = L, again leads to an equation for the phase shift in the wave due to 
the potential V,. This time one obtains 

tan q L - [ 2 k q / ( q 2 +  k 2 ) ]  tan kL 
[ 2 k q / (  q2+  k 2 ) ]  +tan qL tan kL 

e =tan-‘ 

The approximations ( 1 5 )  and (16)  imply 2 k q = q 2 +  k2 ,  so (26)  gives 

e- tan-’ [ tan(q-k)L]=(q-k)L= -27rmL/nw (27)  
exactly as before. In particular, T = L / v ,  and we are led to the same uncertainty 
relation (24 ) .  

In the non-relativistic limit, (24)  reduces to 

A v = l / m o L  (28)  
which is the result found by Peres (1980) for a Schrodinger particle. 

4. Discussion 

We are now in a position to compare the status of velocity measurements for the three 
cases of Dirac, Klein-Gordon and Schrodinger particles in momentum eigenstates. 
For the state chosen, 

the measured velocity can take any values between 0 and 1. Note that the replacement 
k +  -k (and q + -4) reverses the sign of the phase shift 8 in (17)  and yields a value 
for v in the range - 1  to 0. This corresponds to a left-moving wave. 

The situation is no different from the Klein-Gordon case, where the same continuous 
set of values for v is obtained. Both cases reduce in the non-relativistic limit, as 
expected, to the Schrodinger case investigated by Peres (1980).  Indeed, although the 
exact expressions for the phase shift are very different in the three cases, the approximate 
expressions for small V, are identical. 
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There is, however, the question of the uncertainty Au given by (24). Evidently this 
can be made arbitrarily small by letting L + m .  In particular we can arrange for 
1/ LE << 1 so that U can be sharply defined to a value much less than the velocity of 
light. On the other hand, an accurate measurement of the instantaneous velocity for 
the state (29) is not possible, unless we take the infinite energy limit E + CO. In this 
respect there is also no difference from the non-Dirac case. 

Is this result really unexpected? A measurement of velocity will only yield a velocity 
eigenvalue *1 if the system is actually in a velocity eigenstate. For an arbitrary state 
the expectation value of IuI will generally be less than 1. Indeed, commuting a, with 
H leads to the relation (Dirac 1947) 

(30) 

The final term implies a rapid oscillatory motion with frequency greater than moa This 
is the zitterbewegung. Over time intervals much greater than the Compton time it 
averages to zero, leaving only the first term - p x / m o ,  which is the same as for the 
non-Dirac case. 

Thus, to detect the peculiar velocity behaviour of the Dirac particle, it is apparently 
necessary to have L <  m i ’ .  This involves an uncertainty in U of AV 2 mo/E. For a 
non-relativistic particle mol E = 1 and the velocity is completely indeterminate. For 
highly relativistic particles, however, mo/E << 1 and AV<< 1 .  This accords with a result 
of Aharonov and Bohm (1957) that the zitterbewegung diminishes at high energies. 

Evidently, then, a difference in the status of velocity between Dirac and Klein- 
Gordon particles arises in the limit mo+O. Inspection of ( lo) ,  ( 1 1 )  and (14) shows 
that p = 1 exactly in this case, and q - k = Vo, Thus (13) immediately simplifies without 
approximation to yield in place of (18) 

a,( t )  = p x /  H + e2IH’[ a (0) - p, /  HI. 

e=-voL  (31 )  

without the need for small Vo approximation. The energy-time uncertainty limitation 
(24) no longer applies, and A V  = 0. By contrast, no such simplification occurs in (26) 
for the Klein-Gordon particle, and the measurement of velocities close to that of light 
entails the same uncertainty, 1 /  LE. 

The reason for this difference concerns the fact that in the massless limit the Dirac 
eigenstate (29) is simultaneously an eigenstate of the momentum and velocity operators, 
something which is impossible in the Klein-Gordon case, and which arises because 
of the novel feature of Dirac theory that the velocity operator commutes with the 
momentum operator, thus implying that velocity and momentum are independent 
variables. The system, being in a velocity eigenstate in this limit, then permits a precise 
(Au = 0) measurement of velocity. 

It would be interesting to consider the measurement of velocity for velocity eigen- 
states with mo Z 0. However, because a only commutes with H in the massless case, 
such velocity eigenstates would not be stationary states, and would involve superposi- 
tions of positive and negative energies. The measurement of the velocity of a particle 
in such states is likely to be very problematical. 

Acknowledgment 

I should like to thank Dr R Rohwer for helpful comments. 



Measurement of the velocity of a Dirac particle 

References 

Aharonov Y and Bohm D 1957 Nuovo Cimento Suppl. Ser. X 5 429 
Dirac P A M 1947 Principles of Quantum Mechanics 3rd edn (Oxford: Oxford University Press) 
IToba 2 1956 Nuovo Cimento Ser. X 3 1 
Peres A 1980 Am. 1. Phys. 48 552  
Salecker H and Wigner E P 1958 Phys. Rev. 109 571 

2121 


